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Monte Carlo computer simulations have long been used to obtain information 
on the behavior of thermodynamic systems. The method has the advantages of 
being applicable to a very large class of models and of using only systematically 
improvable approximations (finite size of system, statistical errors, etc.). How- 
ever, in the critical region, finite-size effects mask the critical singularities, and 
put severe practical limits onto the accuracy to which the true critical behavior 
can be determined. By combining Monte Carlo simulations with a real-space 
renormalization-group analysis, a large increase in efficiency and accuracy can 
be achieved--without the uncertainties of the usual truncation approximations. 
The methods are illustrated by explicit calculations on models exhibiting critical 
and tricritical behavior. 
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The c o m b i n a t i o n  of M o n t e  Car lo  (MC)  compu te r  s imula t ions  (l) with a 
rea l - space  r enorma l i za t ion -g roup  ( R G )  analysis  (2) was first suggested by  
M a  (3) in 1976. Since that  time, a va r ie ty  of me thods  to implemen t  this 
concep t  have  been  suggested which have  p roven  r e m a r k a b l y  effective in 
p rov id ing  de ta i led  in fo rmat ion  on the t h e r m o d y n a m i c  proper t ies  of systems 
at  phase  t ransi t ions.  Deta i ls  of the his tory of this a p p r o a c h  and  an exten-  
sive b ib l i og raphy  are con ta ined  in Ref. 4. I shall  descr ibe  the advan tages  of 
such an  a p p r o a c h  and  give an  out l ine  of wha t  can  and  has been  accom-  
p l i shed  with a pa r t i cu la r  rea l iza t ion  of the M o n t e  Car lo  r enormal i za t ion  
group ( M C R G )  (4,s~ 

S t a n d a r d  M C  s imula t ions  p roduce  excel lent  da t a  on the proper t ies  of 
finite systems, with re l iable  in terna l  checks. (~ Stat is t ical  errors are  well 
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understood and easily computed. However, the thermodynamic properties 
of an infinite system close to the critical temperature exhibit substantial 
finite-size effects. Since the correlation length diverges as the critical 
temperature is approached, it  eventually becomes greater than the linear 
dimensions of the system being simulated. The critical singularities are 
rounded off in finite systems, preventing us from taking much useful data 
extremely close to T C. 

Real-space RG methods have the advantage of focusing direct onto 
the critical properties with a simple formalism for calculations. They have 
been shown to produce excellent agreement with some known results and 
nontrivial predictions for systems with unknown or partly known proper- 
ties. (2) The main disadvantage of this approach has been the uncertainty of 
the usual truncation approximations. It is difficult to judge the accuracy of 
a calculation, unless a comparison is made with results obtained by other 
methods. 

By combining the two methods, MCRG exploits the advantages of 
each and avoids some of the disadvantages. 

To illustrate the M C R G  method, I introduce the following notation. 
The operator on lattice site i is o i. The simplest example is Ising spins, 
which assume the values + 1 and - 1, but they can more generally assume 
any values, discrete states, a continuum, or even vectors. The Hamiltonian 
can be written in the general form 

H = ~ K ~ S ~  (1) 
ci 

where the S~'s are the various possible combinations of the oi's that occur 
in models of interest or are generated by the renormalization-group trans- 
formations. A simple example is the operator describing the nearest- 
neighbor coupling 

Snn = E OjOj (2) 
</j) 

The renormalization group transforms the problem so as to focus on 
the critical properties. Some fraction of the variables associated with 
short-wavelength fluctuations is integrated out, transforming the original 
system into a new one with fewer degrees of freedom. Transformations are 
generally characterized by a local function of the spin variables, assigning a 
value to each "block spin." These transformations reduce the linear dimen- 
sions by a factor b, where b d is equal to the number of spins in a block. A 
typical example for the d = 2 Ising model is shown in Fig. 1. The square 
lattice is divided into 3 • 3 blocks (b = 3) and assigned the block spin, oj, 
the value of + 1 when the sum of the spins is positive and - 1 when it is 
negative. This is known as a "majority-rule" transformation. 
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Fig. 1. 
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D i a g r a m  of a s imple  R G  block-sp in  t r ans format ion  for a d = 2 Is ing model .  The  

transformation uses a majority rule on 3 x 3 blocks (scale factor b = 3). 

The key to M C R G  methods is the recognition that such transforma- 
tions can be implemented directly without approximation on the explicit 
configurations generated by the MC simulation procedure. 

The R G  transformation is written in terms of the equilibrium probabil- 
ities as 

P ' (~ ' )  = Tr~ T(a', o)P(o) (3) 

The new probability distribution can then be interpreted in terms of an 
effective Hamil tonian for the renormalized block spins 

P ' ( o ' )  = exp[ H'(o') ]/Z' (4) 

where the renormalized Hamiltonian is parametrized by a new set of 
coupling constants  { K~ ). 

However, even for models with only nearest-neighbor interactions and 
simple R G  transformations, the renormalized Hamiltonian contains an 
infinite number  of coupling constants. The R G  transformation therefore 
involves a mapping of an infinite-dimensional space of coupling constants 
onto itself. The difficulties this creates are essential to the real-space 
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renormalization-group method, and are treated differently in different 
formulations of the theory. 

Since RG transformations are local, the correlation length is assumed 
to be unchanged by the transformation, when measured in units of the 
original lattice constant. This implies that in units of the new lattice 
constant, the correlation length is reduced by the scale factor b (b = 3 for 
the example used above). 

If we start with any Hamiltonian at criticality (infinite correlation 
length), the renormalized Hamiltonian will also have an infinite correlation 
length and therefore be a critical point. Further iterations continue to 
produce Hamiltonians on the critical hypersurface and the sequence of 
Hamiltonians will converge towards a fixed point. 

Figure 2 shows a highly schematic diagram of this process. The vertical 
axis represents the most important coupling in the original problem (for 
example, the nearest-neighbor exchange), and the horizontal axis represents 

Knn 
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Fig. 2. Schematic diagram of the trajectories in a many-dimensional space of coupling 
constants under a typical RG transformation. The vertical axis represents the nearest-neighbor 
coupling constant, and the horizontal axis represents all other coupling constants generated by 
the RG transformation (after Ref. 5). 
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all other parameters describing the renormalized Hamiltonians. The RG 
transformation takes the Hamiltonian successively to the crosses labeled 1, 
2, 3, etc. towards the fixed point. 

If we start a small distance away from the critical point, the trajectory 
will first lead towards the fixed point, but eventually, move away from the 
critical hypersurface and away from the fixed point. The values of the 
critical exponents are determined by how rapidly the RG transformation 
brings the renormalized Hamiltonian away from the fixed point. 

We can linearize the renormalization-group transformation to obtain 

where 

(6) 

is evaluated at the fixed point. The eigenvalues of this matrix then deter- 
mine the critical exponents in the usual manner. (2) 

Truncation methods of real-space renormalization-group analysis 
make approximations that eliminate all but a finite number of interactions. 
In many cases, this has been very successful in reproducing known results. 
But in addition to approximations that have proven accurate for some 
models, there are equally plausible approximations that give poor results. A 
transformation can even be good for one model and poor for another. 

In principle, truncation approximations could be improved by includ- 
ing more coupling constants in the calculation. In practice, this is generally 
impossible because of the rapid increase in the difficulty of computation. (2) 

As with other approaches, some sort of truncation must be made using 
MC R G to reduce the problem to a finite number of parameters. The 
truncation for M C R G  is somewhat complicated in that there are two 
different ways in which it occurs: Once in the renormalization transforma- 
tion on the finite lattice and again in the RG analysis. These are distinct 
and their effects must be considered separately. 

The strategy used in MCRG calculations is to start with the Hamilto- 
nian under consideration and use an MC simulation to generate a sequence 
of configurations characteristic of equilibrium on a finite lattice. The exact 
RG transformation is applied directly to the configurations. The result is a 
sequence of configurations for the renormalized spins, characteristic of the 
renormalized Hamiltonian. No approximation is involved other than the 
statistical errors implicit in using a finite number of MC steps. The effects 
of all coupling constants that will fit on the lattice are automatically taken 
into account correctly, 

The effective renormalized Hamiltonian on the finite lattice is used as 
an approximation to the full renormalized Hamiltonian on an infinite 
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lattice. This is the first truncation. Only interactions that fit on the finite 
lattice are included. For the approximation to be valid, the effective range 
of the renormalized Hamiltonians, especially in the neighborhood of the 
fixed point, must be small compared with the dimensions of the lattice. 
This can be checked by repeating the calculation for different-size lattices, 
providing a simple, self-consistent test of the validity of the finite-lattice 
truncation. 

The MC simulation of the system of interest is performed at its critical 
temperature. The repeated iterations move the renormalized Hamiltonians 
towards the fixed point automatically. This give s us a sequence of approxi- 
mations for the critical exponents, which converges towards the fixed-point 
values. 

The matrix T~# is found numerically by solving the set of chain-rule 
equations 

o<s# "+ lb 
- 2 (7) 

The derivatives in Eq. (7) are obtained from MC correlation functions, 

-- <sT(n+ 1)s~n)> - < S (n+ 1)><s/~n)> (8) 
0K~ ") 

The set of linear equations (7) is solved numerically for the matrix T~#, 
which then provides estimates of the critical exponents. 

In principle, the matrix T~# has an infinite number of components. We 
can only calculate part of this matrix, so a truncation is made at this point. 
The effect of including more interactions can be systematically investigated. 
Twenty interactions can easily be included in the analysis. 

An illustration of a MCRG calculation is shown in Table I for the 
d =  2 Ising model, using a block-spin transformation with scale factor 
b = 2. The renormalized block-spin value was determined by majority rule, 
with ties being assigned values of + 1 and - 1 with equal probability. Data 
from lattice sizes of 8 • 8 to 64 • 64 are shown, and details of the 
calculation can be found in Ref. 4. 

Table I shows the thermal eigenvalue exponent, Yr, for all lattices 
used. (4) Each column presents data from a different MC simulation. The 
data are grouped according to the number (Nr) of RG iterations performed. 
N~ gives the number of interactions taken into account in the RG  analysis, 
which is also the rank of the part of the matrix T~# used for each numerical 
calculation. The linear dimensions of the lattice are reduced by the scale 
factor b = 2 with each RG iteration. Consequently, the diagonal rows in 
Table I all refer to the same size lattices. The numbers in  parentheses give 
the approximate statistical uncertainty in the last digit. 
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Table I. Critical Eigenvalue Exponent Yr (Exact Value is 1.000) for 
the # = 2 Ising Model as a Function of the Number of RG Iterations (Nr), 

the Number of Coupling Constants In the RG Analysis (Arc), and the 
Linear Dimension of the Lattice (L). 2 • 2 RG block transformation a 

Lattice size (L) 

N r N~ 64 32 16 8 

1 1 0.912(2) 0 . 9 0 4 ( 1 )  0 . 897 (3 )  0.887(3) 
2 0.967(3) 0 . 9 6 6 ( 2 )  0 . 964 (3 )  0.965(3) 
3 0.968(3) 0 . 968 (2 )  0 . 9 6 6 ( 3 )  0,966(3) 
4 0 . 9 6 9 ( 4 )  0 . 9 6 8 ( 2 )  0 . 966 (3 )  0.969(3) 
5 0.969(4) 0 . 9 6 8 ( 3 )  0 . 964 (4 )  0.964(5) 
6 0,969(3) 0 . 9 6 8 ( 3 )  0 , 9 6 5 ( 4 )  0.964(5) 
7 0.969(5) 0 . 9 6 7 ( 3 )  0 . 9 6 6 ( 4 )  0.962(5) 

1 0.963(4) 0 , 9 5 3 ( 2 )  0.937(3) 
2 0.999(4) 0 , 998 (2 )  0,993(3) 
3 1.001(4) 1 ,000(2 )  0.994(3) 
4 1,002(5) 0 , 9 9 8 ( 2 )  0.984(4) 
5 1.001(5) 0 . 997 (2 )  0.980(5) 
6 1.001(5) 0 . 9 9 7 ( 2 )  0.980(5) 
7 1.000(5) 0 . 9 9 7 ( 3 )  0.980(5) 

1 0.957(2) 0,936(3) 
2 0~998(2) 0.991(3) 
3 0.999(2) 0.993(3) 
4 0.999(2) 0.987(4) 
5 0.997(2) 0.981 (7) 
6 0.997(2) 0.979(7) 
7 0.997(2) 0.977(9) 

4 1 0.940(7) 
2 0.993(6) 
3 0.992(6) 
4 0.988(5) 
5 0.990(5) 
6 0.988(5) 
7 0,984(4) 

aTaken from Ref. 4. 

The  first co lumn in Table  I gives the M C R G  est imates for Yr f rom the 
64 • 64 lattice. There  is a difference between using only a single coupling 
cons tant  (nearest-neighbor)  in the analys is  and  including second-neighbor  
interactions. However ,  the third coupling, four-spin interaction,  does not  
have a significant effect. It  is typical that  only a few couplings are 
impor tan t  for the analysis, a l though this t ransformat ion  is especially favor-  
able. For  the first R G  step, the est imate for Yr is abou t  3% below the exact  
value of one. By the second R G  step, the renormal ized  Hami l ton ian  has 
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moved  closer to the fixed point  and the estimates of 7T are very close to the 
exact value. The fourth iteration shows a very small size effect due to the 
reduct ion of the renormalized lattice to 4 x 4. 

Compar ison  with the 32 X 32 system shows that the first two R G  
iterations are essentially identical. The third iteration exhibits the same 
finite-size effect as the fourth iteration of the 64 x 64 system, exactly as 
expected, since both  systems have been reduced to 4 x 4 lattices, The same 
small effect can also be seen in the second iteration f rom the 16 x 16 
lattice. 

The magnet ic  eigenvalue exponent,  YH, was obtained f rom the same 
M C  simulations without  the necessity of introducing a magnetic  field in the 
initial simulation of the system. The results are actually somewhat  better 
than for the thermal eigenvalue and are shown in Table II. Reference 4 
contains a discussion of the details of the calculation, along with the 
irrelevant eigenvalues and further consistency tests. 

I t  is impor tant  to note that the renormalized Hamil tonians  are never 
explicitly calculated. This is an advantage  in determining the critical 
exponents,  because numerical  errors in determining the fixed point  are 
avoided: However,  some knowledge of the renormalized couplings is re- 

Table II. Same as Table I for the Critical Eigenvalue Exponent YH 
(exact value is 1.875) for the d = 2 Ising ModeF 

i 

Lattice size (L) 

N r N c 64 32 16 8 

1 1 1 .8810(1)  1 .8807(1)  1 .8797(2)  1.8769(4) 
2 1 .8804(1)  1 .8803(1)  1 .8800(2)  1.8795(4) 
3 1 .8806(1)  1 .8806(1)  1 .8802(2)  1.8794(4) 
4 1 .8808(1)  1 .8808( I )  1 .8806(2)  1.8799(4) 

2 1 1 .8757(2)  1 .8748(2)  1.8719(2) 
2 1 .8758(2)  1 .8757(2)  t.8747(2) 
3 1 .8758(2)  1 .8757(2)  1.8745(2) 
4 1 .8759(2)  1 .8758(2)  1.8749(2) 

3 1 1 .8731(4)  1.8710(5) 
2 1 .8740(4)  1.8742(5) 
3 1 .8740(4)  1.8739(5) 
4 1 .8741(4)  1.8743(5) 

4 l 1.8706(5) 
2 1.8735(7) 
3 1.8732(8) 
4 1.8737(9) 

aTaken from Ref. 4. 
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quired to calculate the critical temperature, and techniques have been 
developed to treat this problem, (6) based on a method introduced by 
Wilson (7) for the study of lattice gauge theories. (a) 

The size effect can be compensated by performing two simulations on 
lattices of different sizes. If the two systems differ in size by the scale factor 
b, one application of the RG transformation to the large system will make 
it equal in size to the smaller system. This gives us two equal size systems, 
one of which is described by H (~ and the other by H (1). Since the lattices 
are now the same size, the size effect will be identical for both. 

We can then use the differences in the correlation functions to calcu- 
late the differences in the coupling constants. If the differences in the 
correlation functions are not too large, we can make the linear approxima- 
tion (6) 

[ ~(s(an))L {}(s(~n-1))Sl~K~O ) 
L - = X ( 9 )  

As the number of RG iterations n increases, the deviations of H (n) 
from the fixed point [and from H (n-l~] in the irrelevant directions de- 
crease. The corresponding differences in the correlation functions also 
decrease and disappear into the noise. 

However, deviations in the relevant directions increase upon repetition 
of the RG transformation, and the corresponding differences in the correla- 
tion functions are amplified. This makes the method extremely sensitive to 
the location of the critical temperature, since very small changes in the 
temperature result in large changes in the correlation functions. 

Since Eq. (9) can treat several coupling constants in a single calcula- 
tion, this method can also be used to find multicritical points. O) 

A number of o the r  models are available, for which exact solutions 
exist. The eight-vertex or Baxter model (t~ can be represented by Ising spins 
on a square lattice with 

H = KnnnSnn n -t- K4~ 4 (10) 

where Snn n is the sum over all next-nearest-neighbor products, and S 4 is the 
sum over all four-spin products around an elementary plaquette. The 
critical exponents do not have fixed universal values, but are functions of 
the coupling constants. This requires a fixed line, instead of a simple fixed 
point. The MC RG method does not run into difficulties and has repro- 
duced the correct exponents for v ranging from 0.7 to 1.35. (11) 

Since the method described above is sensitive to all relevant operators, 
it is also effective for multicritical points, as demonstrated for tricritical 
points in two dimensions. (9) Calculations have been carried out for both the 
Blume-Capel model and an antiferromagnet in a magnetic field. Although 
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the models have different symmetries and different RG transformations 
were used, both calculations produced the same four relevant eigenvalues, 
with the numerical values expected. 

A large number of models has already been successfully treated with 
MCRG calculations. To save space and still provide an overview of what 
has been done, I shall just list the models studied. The references to the 
original papers may be found in the extensive list in Ref. 4. 

Ising ferromagnet (d = 2, 3, 4) 
Baxter model 
Ashkin-Teller model 
Type-II Ising antiferromagnet (d = 2) 
Baxter-Wu model 
q-state Potts models (d = 2, 3, 4) 
Tricritical points (d = 2) 

Blume-Capel model 
Antiferromagnet in a magnetic field 

d = 3 X Y  model 
Critical end point  
Lattice gauge theories 
Percolation 
The combination of an RG analysis with MC computer simulations 

has been demonstrated to provide a powerful tool for the investigation of 
critical phenomena. There are several directions in which these methods 
can develop: 

1. Calculation of the location of the fixed point to enable improve- 
ments in the convergence of the method. 

2. Application to systems with quenched random interactions. 
3. Fluids. 
4. Critical dynamics. 
5. Quantum systems. 
Work is already going on in all of these areas, and progress can be 

expected in the near future~ 
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